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INVITED EDITORIAL
“Are We There Yet?”: Deciding When One Has Demonstrated Specific
Genetic Causation in Complex Diseases and Quantitative Traits
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1Section on Statistical Genetics, Department of Biostatistics, 2Division of Rheumatology, Department of Medicine, Departments of
3Epidemiology and 4Genetics, and 5Clinical Nutrition Research Center, University of Alabama at Birmingham, Birmingham

Although mathematical relationships can be proven by deductive logic, biological relationships can only be inferred
from empirical observations. This is a distinct disadvantage for those of us who strive to identify the genes involved
in complex diseases and quantitative traits. If causation cannot be proven, however, what does constitute sufficient
evidence for causation? The philosopher Karl Popper said, “Our belief in a hypothesis can have no stronger basis
than our repeated unsuccessful critical attempts to refute it.” We believe that to establish causation, as scientists,
we must make a serious attempt to refute our own hypotheses and to eliminate all known sources of bias before
association becomes causation. In addition, we suggest that investigators must provide sufficient data and evidence
of their unsuccessful efforts to find any confounding biases. In this editorial, we discuss what “causation” means
in the context of complex diseases and quantitative traits, and we suggest guidelines for steps that may be taken
to address possible confounders of association before polymorphisms may be called “causative.”

Background

The cystic fibrosis gene was one of the first genes iden-
tified by positional cloning (Riordan et al. 1989), and its
discovery was heralded with much fanfare. In tribute to
the evolving power of modern molecular, genomic, and
statistical tools, the identification of genes responsible
for Mendelian traits has progressed to such an extent that,
in the April 2003 issue of Nature Genetics, identification
of the genes for no fewer than eight different Mendelian
conditions were reported. To date, 11,400 genes for
∼1,200 Mendelian traits have been identified.

The tremendous success in identification of genes re-
sponsible for Mendelian traits has not been followed,
however, by similar successes in the identification of genes
responsible for complex diseases or for variation in quan-
titative traits. Despite 11,300 National Institutes of
Health (NIH)–funded studies of complex genetic disease
(Computer Retrieval of Information on Scientific Pro-
jects) and multiple reports on at least 166 genes, as few
as 10–50 causative polymorphisms for complex diseases
have been identified in humans (Ioannidis et al. 2003;
Lohmueller et al. 2003). It is disturbing that only 16%–
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30% (Hirschhorn and Altshuler 2002; Ioannidis 2003;
Ioannidis et al. 2003; Lohmueller et al. 2003) of initially
reported significant associations have been consistently
replicated without any evidence of between-study hetero-
geneity or bias.

Why has the identification of causative genes for com-
plex diseases been so elusive? To a certain extent, their
name reveals the problem; complex diseases are complex.
They may be affected by both genetic and environment
interactions, as well as by gene-by-gene and gene-by-
environment factors. Although traits being studied may
aggregate in families, they do not segregate in Mendelian
fashion, and, even if they did, the late onset of some of
these diseases would make family studies difficult. To
make matters even more challenging, individual alleles
are probably neither necessary nor sufficient to cause
the phenotype; thus, the “disease” alleles may be present
in the nondiseased population. Perhaps the greatest
challenge of all is the fact that we cannot randomly
assign people to levels of the independent variable (i.e.,
genotypes). Most statisticians would agree that random
assignment is the sine qua non of the true experiment.
This puts us out of the realm of true experimentation
(Rubin 1991; Rosenbaum 1995) and leaves open grounds
for doubt (Rosenbaum 1995). Our job, then, is providing
convincing evidence for a putative causal effect comes
from our ability to enumerate and subsequently vitiate
each of those grounds for doubt.

Given these challenges, the identification of causative
polymorphisms has been difficult, and there is no explicit
consensus about what constitutes sufficient evidence to
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establish causation from association. Several groups have
offered thoughts on these matters (Glazier et al. 2002;
Sing et al. 2003), but the treatments have either been
highly context dependent (Hirschhorn and Altshuler
2002) or heavily focused on situations in which there
exist clear animal models of the phenotypes under study
(Mackay 2001), which is often not the case for complex
traits, such as psychiatric disorders. In this treatise, we
advance suggestions for what is sufficient evidence to
translate from association to causation.

The Definition of “Causation” in Complex Diseases
and Quantitative Traits

“The view [of causation] that we adopt has consequences
which reach beyond informal discussion during coffee
breaks” (Olsen 1993, p. 205). Causation is an essential
concept in the field of genetics. Causal claims, such as
“This gene causes such and such disease,” have long been
in the genetics literature, but it is not clear that geneticists
are consistent in using the concept of causation, especially
in the context of complex traits.

Many definitions of “cause” have been developed.
“The word cause is an abstract noun and, like beauty,
will have different meanings in different contexts”
(MacMahon and Pugh 1970, p. 396). To use “cause” as
a scientific term, it is important that we clarify what is
meant in the particular context. If somebody makes a
statement that “smoking causes cancer,” it could mean
“only smoking causes cancer,” “all people who smoke
will develop cancer,” or “at least one smoker will develop
cancer,” depending on the point of view of the speaker
(Kramer and Lane 1992; Parascandola and Weed 2001).
On the basis of an extensive review of the epidemio-
logical literature, there are at least five nonmutually ex-
clusive definitions of “causation” (adapted from Par-
ascandola and Weed [2001]):

1. Production: causes are conditions that play an es-
sential part in producing the occurrence of disease.

2. Necessary: a necessary cause is a condition without
which the effect cannot occur.

3. Sufficient: when the cause is present, the effect must
occur.

4. Probabilistic: a probabilistic cause increases the
probability of its effect occurring.

5. Counterfactual: a counterfactual cause makes a dif-
ference in the outcome when it is present verses
when it is absent.

It is important to note that, when considering the
causes of Mendelian traits, we usually talk about “suf-
ficient causes,” but, for complex diseases, we are refer-
ring to “probabilistic causes,” which increase the prob-
ability of a disease occurring. For quantitative traits, the
concept of “counterfactual cause” is considered. A coun-

terfactual cause makes a difference in the outcome (or
probability of an outcome) when it is present, compared
with when it is absent, while all else is held constant.
Neither probabilistic nor counterfactual causes require
the causes to be either necessary or sufficient. (Parascan
dola and Weed 2001). The probabilistic and counter-
factual uses of “cause” have certain advantages over
other definitions, because they are more inclusive and
make fewer assumptions, an aim of science. These def-
initions also provide the theoretical means to construct
models of interactions and dose-response relationships
through a continuum of probability values, as mani-
fested by the liability for complex traits and the distribu-
tion or value of quantitative traits (Falconer and Mackay
1996).

Some History of Guidelines for Establishing Causation

The accepted requirements for demonstrating causation
have evolved through time. In the 1880s, Robert Koch
established guidelines for determining whether a micro-
organism is the cause of a disease. Koch (1882) stated
that, to establish causation, one had to demonstrate that:
(1) the parasite occurs in every case of the disease in
question and under circumstances that can account for
the pathological changes and the clinical course of the
disease; (2) the parasite occurs in no other disease as a
fortuitous and nonpathogenic parasite; and (3) after be-
ing fully isolated from the body and repeatedly grown in
pure culture, the parasite can induce the disease again
(Koch 1882, 1891; Rivers 1937; Fredericks and Relman
1996). Although this line of reasoning worked well for
tuberculosis, the existence of obligate parasites, such as
viruses, made the limitations of this approach for many
other diseases so obvious that, by 1936, Thomas Rivers,
then President of the Society of American Bacteriologists,
wrote “It is unfortunate that so many workers blindly
followed the rules, because Koch himself recognized that
in certain instances all the conditions could not be met.…
Thus in regard to certain diseases, particularly those
caused by viruses, blind adherence to Koch’s postulates
may act as a hindrance instead of an aid.” (Rivers 1937,
p. 21). Rivers went on to develop a revision for the
postulates that later developed into a nine-point list that
included epidemiology in the equation (Huebner 1957).
Huebner (1957) recognized that setting strict rules could
be a hindrance; thus, he proposed his list as guidelines
rather than a formal set of rules.

In 1965, Sir Austin Bradford Hill presented guidelines
for epidemiological causation in environmental and oc-
cupational medicine (Hill 1965):

1. Strength of association
2. Consistency and unbiasedness of association
3. Specificity of the association
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4. Temporality
5. Biological gradient
6. Biological plausibility
7. Coherence with previous knowledge
8. Experimental evidence
9. Reasoning by analogy.

With careful reading, it is clear that Hill (1965) intended
these as guidelines and not as rigid criteria that must be
satisfied. Multiple times, he pointed out that not all of
these guidelines will be applicable in all situations and
that there may be times when we wish to conclude that
a putative cause-effect relationship is real even when some
of the criteria are not met. The criteria proposed by Hill
(1965) also do not assume a one-to-one relationship be-
tween cause and effect, and, in this sense, they are
well suited for use with complex diseases and quan-
titative traits. However, it must be acknowledged that
legitimate questions have been raised about the degree
to which they are applicable to modern epidemiology, in
which the causes under study may have very modest ef-
fects (Phillips and Goodman 2001). This criticism ex-
tends to the study of genes for complex diseases and
quantitative traits a fortiori. Thus, although we think
that the modern genetic researcher can benefit from stud-
ying Hill’s (1965) proposed guidelines and his rationale
for them, we believe that they, too, are not entirely sat-
isfactory for our needs.

The genetics literature has been filled with many guide-
lines. Morton (1955) suggested that a LOD score 13 is
required to declare linkage of a Mendelian trait to a locus.
There are also well-developed criteria for the identifica-
tion and reporting of causative polymorphisms for Men-
delian traits. Typically, these include: (1) linkage (usually

) to a particular region of the human genome;LOD 1 3
(2) one or more independent mutations that are per-
fectly concordant with disease status in affected families;
(3) defect(s) that lead to macro changes in the protein;
(4) putative mutations that are not present in a sample
from a control population, or better yet, no macro mu-
tations in the putative gene in the samples from the
control populations; and, often, (5) the presence of some
other line of biological evidence (expression, protein,
knockout, etc. [Glazier et al. 2002]).

Lander and Kruglyak (1995) have advanced a set of
criteria for the reporting of linkage of putative loci for
complex traits. These guidelines were developed to mini-
mize the rate of type 1 errors in genome scans. Others
have suggested false-discovery-rate (FDR) procedures
(Benjamini et al. 2001; Storey and Tibshirani 2003).
Several groups have advanced criteria for establishing
association with complex traits (Lander and Schork
1994; Risch and Merikangas 1996; Phillips 1999;
Mackay 2001; Glazier et al. 2002). Risch and Meri-
kangas (1996) have suggested a P value of or�8.5 # 10

smaller, whereas others (Mackay 2001) have suggested
more biological lines of evidence, such as complemen-
tation or mouse-knockout studies. However, no consen-
sus has yet been reached on what constitutes sufficient
evidence for complex diseases or quantitative traits.

From Association to Causation

An association between a polymorphism and a complex
disease or quantitative trait can exist for four reasons:

1. The polymorphism is actually causative for the dis-
ease or trait.

2. The association is a false positive due to random
chance.

3. The polymorphism is in disequilibrium with the
true causative allele.

4. The polymorphism is associated because of some
systematic bias in the biology, study, samples, or
analysis.

We believe that the best method to establish that poly-
morphisms are causative for complex diseases or quan-
titative traits is summarized by two quotations. The first
is from Sherlock Holmes: “[W]hen you have eliminated
all which is impossible, then whatever remains, however
improbable, must be the truth” (Doyle 1926, p. 464).
Second, a quote from Karl Popper: “Our belief in some
hypotheses can have no stronger basis than our repeated
unsuccessful critical attempts to refute it” (Popper 1961,
p. 100). When an investigator(s) systematically removes
any possible sources of random error, bias, confounding
factors, or disequilibria, and an association remains, cau-
sation between a polymorphism and a trait or disease
may be suggested.

Reduction of Association by Chance

It is tempting to set a single, hard P value guideline for
causation, such as those proffered by Lander and Krug-
lyak (1995) and Risch and Merikangas (1996), for they
are easy to comply with and are very objective. However,
we should not, as Bradford Hill said, “[allow] [t]he glit-
ter of the t table to divert attention from the inadequacies
of the fare” (Hill 1965, p. 300). The validity of the P
value that results at the end of a study is dependent on
the quality of the data put into a study and on the quality
of the analyses employed. In other words, “garbage in,
garbage out.” Setting a high P value only reduces the
chance of false-positive associations; it does not deal
with the other two sources of spurious associations, dis-
equilibrium and bias (Whitte et al. 1996).

However, there should be some control of errors. A
conservative P value—such as a Bonferroni-corrected P
value of or an FDR (Benjamini and HochbergP ! .05
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1995; Benjamini et al. 2001) of, say, !5%—is useful to
reduce the rate of false positives, but this is only one
component of a set of criteria for causation.

Elimination of Association Due to Disequilibrium

Whereas disequilibrium can be used to predict the effect
of the true causative loci, as is often done in marker-
assisted selection in plants, “the cause of an event in na-
ture is the handle so to speak, by which we can manipulate
it” (Collingwood 1940, p. 278). If we do not have the
true causative polymorphisms, we have a fragile handle
that may not be sufficient for the understanding or ma-
nipulation of the disease.

The identification of the true causative polymor-
phisms in a region is quite involved, owing to the large
stretches of DNA over which disequilibrium can exist
(Clark et al. 1998; Nickerson et al. 1998, 2000). Careful
attention must be paid to identifying all the polymor-
phisms in a region. Haplotype blocks, allelic heteroge-
neity, overdominance, and epistasis can all confound the
identification of the true causative allele(s) (Culverhouse
et al. 2002). This is essentially a problem of multicolli-
nearity, which is best dealt with by experimental assign-
ment designed to break up the collinearity (Glantz and
Slinker 1990) or by increasing sample size to compensate
for it. The former seems impossible, owing to the inability
to assign people to genotypes, and the sample required
for the latter may exceed the population of the planet
for tightly linked loci.

Eliminating disequilibrium as a source of confounding
is an involved process and requires extensive sequenc-
ing, genotyping, and statistical testing. Even after great
effort, the identification of a true causative polymorphism
may still elude us.

Elimination of Errors Due to the Design
and Conduct of the Study

Some forms of error or bias are not inherent in the phe-
nomena under study but are the result of methodological
artifacts, procedural errors, or (it is hoped, unintentional)
investigator biases.

The following list is not meant to be exhaustive but,
rather, is a delineation of some of the issues and topics
that require proper care and attention during the design
and analysis of studies. Although it may go without say-
ing, a refined understanding of the disease process is
needed before beginning a study, and this knowledge
should be devoted to minimizing the biases and con-
founding factors, even before the study begins. There are
surprisingly few reviews that highlight the issues that
need to be considered in the design and conduct of a
study; for exceptions, see Terwilliger and Goring (2000)
and Ellsworth and Manolio (1999). The phenotype(s) to

be studied must be well defined and heritable. Linkage
and association, no matter how significant, have no
meaning unless there is a genetic contribution to the trait
(Ott 1991). Second, all biological assays are imprecise.
Genotyping (Gordon et al. 2002, 2003) and phenotyping
(Rice et al. 2001; Egan et al. 2003) have error rates.
Relatively modest levels of error in either the genotyping
or phenotyping will result in significantly diminished
power; moreover, some errors, such as null alleles (Ewen
et al. 2000), can cause false-positive results. Despite all
efforts to the contrary, there are always human errors.
Rigorous quality-control checks can be implemented in
all studies, to properly account for these types of human
errors. Every statistical test is based on certain assump-
tions about the nature of the data, and, if these as-
sumptions are violated, the significances generated may
not be valid. The assumptions that underpin all statis-
tical tests are known and can be verified. The software
used can generate different results for essentially the same
analysis (Weeks et al. 1995). Finally, there is always
some “cleaning” of data before formal analysis, such
as correcting systematic errors (e.g., fixing pedigree er-
rors). However, extreme caution must be used in clean-
ing, for it is possible to alter data to get the answer that
one desires. Cleaning should be conducted to get the
most accurate data, not the most significant result.

It is here that the role of replication becomes critical.
Contrary to popular opinion, replication is not the op-
timal way to deal with the threat to a conclusion’s va-
lidity posed by stochastic error. This is best dealt with
by seeking an appropriately small frequentist P value or
FDR or an appropriately high Bayesian posterior prob-
ability (Vieland 1998). Instead, replication may be the
best way to fend off the threat to a conclusion’s validity
posed by methodological artifacts, procedural errors, or
investigator biases. It is important to note, however, that,
if the same experimenter—with the same biases and using
the same methods and procedures—repeats a study that
led to an erroneous conclusion, then the same erroneous
conclusion could be reached again. In this light, David
Lykken’s classic paper (1968) on replication is instruc-
tive. Lykken (1968) distinguished between “operational
replication” and “constructive replication.” In the for-
mer, one strives to repeat the original study exactly, pro-
cedure for procedure. In the latter, one strives to evaluate
the same conceptual hypothesis but through distinctly
different methodology. Most would agree that a con-
structive replication (e.g., an association observed by
a different investigator who uses a different genotyping
method, a different phenotyping method, a different
sampling scheme, a different statistical procedure, and
different data-analytic software) offers far stronger evi-
dence that the original apparent association was not due
to investigator bias, systematic genotyping error, sys-
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tematic phenotyping error, selection bias, an invalid sta-
tistical procedure, or a software bug.

Controlling for Biological Biases

Controlling for Admixture

There are also sources of potential bias that are intrinsic
to the nature of phenomena being studied rather than to
experimental artifacts. Population admixture is poten-
tially problematic, for it can both lead to false-positive
results and mask true association. Opinions regarding
the importance of population stratification in association
studies vary greatly (Thomas and Witte 2002; Cardon
and Palmer 2003; Hoggart et al. 2003). In an effort to
make case-control studies valid in the presence of ad-
mixture, a wide variety of methods have been developed
to address the effects of population stratification (Parra
et al. 1998, 2001; Stephens et al. 1998; Pritchard and
Rosenberg 1999; McKeigue et al. 2000). Admixture will
not only induce false-positive results, but it can also in-
duce false-negative results (Deng 2001; Deng et al. 2001).
Some may say that admixture is not an issue, but we
believe that, unless it is addressed, it will remain a po-
tential source of bias that detracts from any reported
causation. Many of the admixture-controlling methods
are dependent on having parental populations; however,
when studying an admixed population, there is not one
single European, Asian, African, or Native American
population, and selecting the incorrect parental popu-
lation can change the estimates of admixture and thus
bias the results. In addition, it is not yet clear which of
these methods are most powerful and whether any are
valid in practice.

Selecting the Controls

The choice of a control population is probably the most
critical factor for the success or failure of a case-control
study. A poorly chosen control population can mask true
associations (false-negative results) or generate false-posi-
tive results (Ellsworth and Manolio 1999). The false-posi-
tive results can be detected by replication in other popu-
lations, but the false-negative results are very difficult to
identify and to eliminate.

Several of the recently reported associations with com-
plex diseases have been in founder populations (Gratacos
et al. 2001; Gianfrancesco et al. 2003). Although founder
populations can be very powerful for detecting common
disease genes, the same founding event that makes them
powerful for identifying disease alleles can also cause
changes in the allele frequencies for many, if not most,
polymorphic sites (de la Chapelle and Wright 1998;
Wright et al. 1999). Thus, selecting control samples from
even a modest geographic distance away from the foun-
der location can cause spurious associations.

Most complex diseases have an environmental com-
ponent. Thus, controls should be selected to minimize
the confounding factors between genes and environment
(Lander and Schork 1994; Glazier et al. 2002; Kaprio
et al. 2002). If many traits are to be studied in a popula-
tion, it may be advantageous to collect a control popu-
lation that is far larger than the case population and then
match on the basis of covariate information.

The use of convenience controls (samples from pre-
vious studies, samples from the lab across the hall, and/
or random samples from the blood bank) is quite com-
mon, but their use can lead to biases. It is often unknown
whether the controls have the disease of interest; their
phenotypic assessments may have been conducted with
different instruments, at different labs, or with different
techniques; they may not be matched for admixture; they
may have different environmental factors; and there is
less ability to recontact, if additional information is
needed. It is, thus, usually better to collect a new, well-
characterized control population designed to address the
disease of interest.

Biological Plausibility

At no point have we talked about the biological plau-
sibility of the polymorphism or about using nonstatistical
methods to verify that the polymorphism has some ef-
fect. We believe that biological plausibility is useful, but,
given that our knowledge of the genome is not complete,
biological plausibility may not be apparent. Many of the
genes known to harbor variation that predisposes to
Mendelian traits were not known to be involved in the
biology of the disease until the mutations were discov-
ered. For example, it took several years after the discovery
of the BRCA1 gene to determine how it functions as a
tumor suppressor, and some of the functions of BRCA1
are still not well known. We are not saying that biologi-
cal plausibility is not important; rather, we do not believe
that any one particular biological test is appropriate un-
der all conditions. Some papers suggest complementa-
tion—the mating of two homozygous mutants strains to
generate or fail to generate a wild-type organism (Mackay
2001; Glazier et al. 2002)—whereas others suggest in-
ducing the mutation in a mouse model. However, in
humans, complementation is essentially impossible, and
there has been only modest success in replicating human
diseases in mice (Ahmad-Annuar et al. 2003). The knock-
out is the modern interpretation of Koch’s hypothesis,
useful in some regards but not in others, and is highly
limiting if it must be applied in all cases (Thyagarajan
et al. 2003). For example, generating noncoding or com-
plex effects, such as those in CAPN10, may not be pos-
sible. Some of the types of biological proofs that have
been offered, such as differential gene expression, reveal
only different gene expression; it does not necessarily fol-
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low that a disease phenotype will result. Thus, although
any causative polymorphisms will have some biological
link to the disease or trait, we do not include biological
plausibility in our model for probabilistic or counterfac-
tual causation.

“When You Have Eliminated All Which Are
Impossible, Then Whatever Remains, However
Improbable, Must Be the Truth.”

The above list of potential biases that could be found in
a study is by no means complete. It is the responsibility
of the investigator(s) to think deeply about all the possible
sources of bias and confounding and to remove them. If
the biases cannot be removed, it is not appropriate to
suggest causation. We believe, in essence, that the in-
vestigators must have sufficiently convinced themselves
that the reported polymorphism is causative, in that they
are ready to stop exploring the region with genetic tech-
niques and either to move on to other unlinked loci or
to switch to determining the biological basis for the caus-
ative allele. Once this level of belief has been reached,
it is time to try to convince others of the validity of the
suggested causation.

Dissemination of Ideas

“All scientific work is incomplete—whether it be obser-
vational or experimental. All scientific work is liable to
be upset or modified by advancing knowledge” (Hill
1965, p. 297). However, at a certain point, knowledge
must be disseminated and tested by others.

Information is the key to allow one’s peers to make
a serious attempt to prove or refute a hypothesis. To
facilitate testing the hypothesis of causation, we suggest
that all tested phenotypic and genotypic data be reported
in online supplements in their original—rather than tabu-
lated—forms, even those results that are nonsignificant.
Many reading this editorial will argue that they provide
sufficient information or as much information as can
be squeezed into a 1,500-word short communication.
Although the size of articles may be shrinking, there is
essentially unlimited space available for online supple-
ments that can be used to compensate for this short-
coming. If online supplements are used, they must be
edited and peer reviewed as well as the main article.

The suggestion that we share a tremendous amount
of data may not sit well with investigators. Revealing
all this information can lead investigators to feel very
vulnerable. They may think, “I collected the data. Why
should I let others reap the benefits?” “Did I test every-
thing?” “Will I be embarrassed in public?” We agree that
these are genuine concerns. However, there is a move-
ment in the NIH to encourage investigators to report
data quickly. By October 2003, all data from new NCI

grants with a budget of 1$1/2 million per year must put
all data in the public domain within a “reasonable”
length of time, and many journals have adopted the rec-
ommendation of the Microarray Gene Expression Data
consortium that all microarray data be put in the public
domain before publication (Ball et al. 2002). The push
to make public all data collected through publicly funded
investigations will only increase, and we should embrace
this policy rather than fight it. The goal of this policy
is to have science advance faster by having many, rather
than a few, working on a problem. As we have seen in
the genome-sequencing projects of many organisms, we
can reach the goal faster by having researchers at many
sites striving toward the same goal and releasing data
as they are produced. Similarly, the SNP Consortium
(Thorisson and Stein 2003) allows many to work on
gene identification while others work on the verification
and establish gene frequencies in various populations.

Reporting of this amount and type of data will also
allow for better meta-analysis (Goldstein et al. 1999;
Guerra et al. 1999; Etzel and Guerra 2002), studies of
meta-phenotypes (Uhl et al. 2002), the identification of
subgroups, and minimization of publication bias (Loh-
mueller et al. 2003). For example, the combing studies
of alcoholism and nicotine and illegal-drug use could
lead to the identification of substance-abuse loci (Uhl et
al. 2002). Linkage or association studies of subgroups
can be quite powerful (Hall et al. 1990; Hall 2003). Mary
Claire King was able to identify linkage to the region of
the BRCA1 locus because she was able to observe a sub-
set of families with very-early–onset breast cancer (Hall
et al. 1990).

Attempts to prove or refute a hypothesis of causation
should be conducted with as much care to remove biases
as was used for the initial study. Biases should be re-
moved from both positive and negative studies, for, al-
though biases can cause false-positive results, they can
also cause false-negative results. It would not be fair to
attempt to refute a well-designed study with a poorly
designed study.

Summary

We believe that definitive proof of causation will remain
elusive, owing, in part, to our inability to randomly as-
sign people to genotypes. However, the strongest belief in
a causal connection between a polymorphism and a dis-
ease or trait will come through repeated, systematic at-
tempts to eliminate any source of bias that could be
leading to a false discovery, while maintaining a high
level of statistical significance. Since it is always possible
that some unmeasured or unimagined effects could be
biasing the results, we encourage the reporting of all
relevant data so that any biases that could lead to false
results can be identified. We recommend reporting in-
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formation on the genotypes and phenotypes (including
the data that make up composite phenotypes) of all in-
dividuals in the study. Only after independent groups
have successfully replicated a finding and have been un-
successful at identifying new sources of systematic bias
does it seem reasonable to conclude that causation has
been demonstrated with sufficient certainty for everyday
life.
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